Published on Mon Mar 09 2020

Evidence of CD1d pathway of lipid antigen presentation in mouse primary lung epithelial cells and its up-regulation upon Mycobacterium bovis BCG infection.

Zaigham Abbas Rizvi, Niti Puri, Rajiv K Saxena

Presentation of a prototype lipid antigen α-Galactosylceramide (αGC) was examined on primary epithelial cells derived from mouse lungs and on bronchoalveolar lavage (BAL) cells that essentially comprise alveolar macrophages. Presence of CD1d molecules coupled to αGC

1
1
2
Abstract

Presentation of a prototype lipid antigen α-Galactosylceramide (αGC) was examined on primary epithelial cells derived from mouse lungs and on bronchoalveolar lavage (BAL) cells that essentially comprise alveolar macrophages. Presence of CD1d molecules coupled to αGC was demonstrated on both types of cells pre-treated with αGC, suggesting that both cell types are equipped to present lipid antigens. Internalization of Mycobacterium bovis Bacillus Calmette-Guérin (BCG: a prototype pathogen), a pre-requisite to the processing and presentation of protein as well as lipid antigens, was clearly demonstrated in primary lung epithelial (PLE) cells as well as BAL cells. Both PLE and BAL cells expressed CD1d molecule and a significant up-regulation of its expression occurred upon infection of these cells with BCG. Besides CD1d, the expression of other important molecules that participate in lipid antigen presentation pathway (i.e. microsomal triglyceride transfer protein (MTTP), scavenger receptor B1 (SR-B1) and Saposin) was also significantly upregulated in PLE and BAL cells upon BCG infection. In situ up-regulation of CD1d expression on lung epithelial cells was also demonstrated in the lungs of mice exposed intra-tracheally to BCG. Taken together these results suggest that lung epithelial cells may have the ability to present lipid antigens and this pathway seems to get significantly upregulated in response to BCG infection.